Article: Iron

26 manganese ← iron → cobalt
-
↑
Fe
↓
Ru
6091-fe-tableimage-iron.png
periodic table
General
Name, Symbol, Number iron, Fe, 26
Chemical series transition metals
Group, Period, Block 8, 4, d
Appearance lustrous metallic
with a grayish tinge
6092-125px-fe-2c26-iron.jpg
Atomic mass 55.845(2) g/mol
Electron configuration [Ar] 3d6 4s2
Electrons per shell 2, 8, 14, 2
Physical properties
Phase solid
Density (near r.t.) 7.86 g·cm−3
Liquid density at m.p. 6.98 g·cm−3
Melting point 1811 K
(1538 Â°C, 2800 Â°F)
Boiling point 3134 K
(2861 °C, 5182 °F)
Heat of fusion 13.81 kJ·mol−1
Heat of vaporization 340 kJ·mol−1
Heat capacity (25 °C) 25.10 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1728 1890 2091 2346 2679 3132
Atomic properties
Crystal structure Body-centered cubic
except between temperatures
1185 K and 1667 K when
it is a face-centered cubic
Oxidation states 2, 3, 4, 6
(amphoteric oxide)
Electronegativity 1.83 (Pauling scale)
Ionization energies
(more)
1st: 762.5 kJ·mol−1
2nd: 1561.9 kJ·mol−1
3rd: 2957 kJ·mol−1
Atomic radius 140 pm
Atomic radius (calc.) 156 pm
Covalent radius 125 pm
Miscellaneous
Magnetic ordering ferromagnetic
Electrical resistivity (20 Â°C) 96.1 nΩ·m
Thermal conductivity (300 K) 80.4 W·m−1·K−1
Thermal expansion (25 °C) 11.8 µm·m−1·K−1
Speed of sound (thin rod) (r.t.) (electrolytic)
5120  m·s−1
Young's modulus 211 GPa
Shear modulus 82 GPa
Bulk modulus 170 GPa
Poisson ratio 0.29
Mohs hardness 4.0
Vickers hardness 608 MPa
Brinell hardness 490 MPa
CAS registry number 7439-89-6
Notable isotopes
Main article: Isotopes of iron
iso NA half-life DM DE (MeV) DP
54Fe 5.8% >3.1×1022y 2ε capture  ? 54Cr
55Fe syn 2.73 y ε capture 0.231 55Mn
56Fe 91.72% Fe is stable with 30 neutrons
57Fe 2.2% Fe is stable with 31 neutrons
58Fe 0.28% Fe is stable with 32 neutrons
59Fe syn 44.503 d β 1.565 59Co
60Fe syn 1.5×106 y β- 3.978 60Co
References

Iron is a chemical element with the symbol Fe (L.: Ferrum) and atomic number 26. Iron is a group 8 and period 4 metal. Iron is notable for being the final element produced by stellar nucleosynthesis, and thus the heaviest element which does not require a supernova or similarly cataclysmic event for its formation. It is therefore the most abundant heavy metal in the universe.

Notable characteristics

Iron is the most abundant metal on Earth, and is believed to be the tenth most abundant element in the universe. Iron is also the second most abundant element by mass, making up 34% of the mass of the Earth; the concentration of iron in the various layers of the Earth ranges from high at the inner core to about 5% in the outer crust. It is possible the Earth's inner core consists of a single iron crystal, although it is more likely to be a mixture of iron and nickel. The large amount of iron in the Earth is thought to create its magnetic field.

Iron is a metal extracted from iron ore, and is almost never found in the free elemental state. In order to obtain elemental iron, the impurities must be removed by chemical reduction. Iron is used in the production of steel, an alloy or solid solution of different metals, and some non-metals, particularly carbon.

Nuclei of iron have some of the highest binding energies per nucleon, surpassed only by the nickel isotope 62Ni. The universally most abundant of the highly stable nucleides is, however, 56Fe. This is formed by nuclear fusion in the stars. Although a further tiny energy gain could be extracted by synthesizing 62Ni, conditions in stars are not right for this process to be favoured. [citation needed] When a very large star contracts at the end of its life, internal pressure and temperature rise, allowing the star to produce progressively heavier elements, despite these being less stable than the elements around mass number 60, known as the "iron group". This leads to a supernova.

Some cosmological models with an open universe predict that there will be a phase where as a result of slow fusion and fission reactions, everything will become iron.

Applications

Iron is the most used of all the metals, comprising 95 percent of all the metal tonnage produced worldwide. Its combination of low cost and high strength make it indispensable, especially in applications like automobiles, the hulls of large ships, and structural components for buildings. Steel is the best known alloy of iron, and some of the forms that iron can take include:

  • Pig iron has 4% – 5% carbon and contains varying amounts of contaminants such as sulfur, silicon and phosphorus. Its only significance is that of an intermediate step on the way from iron ore to cast iron and steel.
  • Cast iron contains 2% – 4.0% carbon , 1% – 6% silicon , and small amounts of manganese. Contaminants present in pig iron that negatively affect the material properties, such as sulfur and phosphorus, have been reduced to an acceptable level. It has a melting point in the range of 1420–1470 K, which is lower than either of its two main components, and makes it the first product to be melted when carbon and iron are heated together. Its mechanical properties vary greatly, dependent upon the form carbon takes in the alloy. 'White' cast irons contain their carbon in the form of cementite, or iron carbide. This hard, brittle compound dominates the mechanical properties of white cast irons, rendering them hard, but unresistant to shock. The broken surface of a white cast iron is full of fine facets of the broken carbide, a very pale, silvery, shiny material, hence the appellation. In grey iron, the carbon exists free as fine flakes of graphite , and also, renders the material brittle due to the stress-raising nature of the sharp edged flakes of graphite. A newer variant of grey iron, referred to as ductile iron is specially treated with trace amounts of magnesium to alter the shape of graphite to sheroids, or nodules, vastly increasing the toughness and strength of the material.
  • Carbon steel contains between 0.4% and 1.5% carbon, with small amounts of manganese, sulfur, phosphorus, and silicon.
  • Wrought iron contains less than 0.2% carbon. It is a tough, malleable product, not as fusible as pig iron. It has a very small amount of carbon, a few tenths of a percent. If honed to an edge, it loses it quickly. Wrought iron is characterised, especially in old samples, by the presence of fine 'stringers' or filaments of slag entrapped in the metal.
  • Alloy steels contain varying amounts of carbon as well as other metals, such as chromium, vanadium, molybdenum, nickel, tungsten, etc. They are used for structural purposes, as their alloy content raises their cost and necessitates justification of their use. Recent developments in ferrous metallurgy have produced a growing range of microalloyed steels, also termed 'HSLA' or high-strength, low alloy steels, containing tiny additions to produce high strengths and often spectacular toughness at minimal cost.
  • Iron(III) oxides are used in the production of magnetic storage media in computers. They are often mixed with other compounds, and retain their magnetic properties in solution.

History

The first signs of use of iron come from the Sumerians and the Egyptians, where around 4000 BCE, a few items, such as the tips of spears, daggers and ornaments, were being fashioned from iron recovered from meteorites. Because meteorites fall from the sky, some linguists have conjectured that the English word iron (OE Ä«sern), which has cognates in many northern and western European languages, derives from the Etruscan aisar which means "the gods".[1] Even if this is not the case, the word is likely a loan into pre-Proto-Germanic from Celtic or Italic (Krahe IF 46:184f. compares Old Irish, Illyrian, Venetic and Messapic forms). The meteoric origin of Iron in its first use by humans is also alluded to in the Quran : "and We sent down Iron, in which is (material for) mighty war, as well as many benefits for mankind" (57:25).

By 3500 BCE to 2000 BCE, increasing numbers of smelted iron objects (distinguishable from meteoric iron by the lack of nickel in the product) appear in Mesopotamia, Anatolia, and Egypt. However, their use appears to be ceremonial, and iron was an expensive metal, more expensive than gold. In the Iliad, weaponry is mostly bronze, but iron ingots are used for trade. Some resources (see the reference What Caused the Iron Age? below) suggest that iron was being created then as a by-product of copper refining, as sponge iron, and was not reducible by the metallurgy of the time. By 1600 BCE to 1200 BCE, iron was used increasingly in the Middle East, but did not supplant the dominant use of bronze.

6093-250px-axe-of-iron-from-swedish-iron-age-2c-found-at-gotland-2c-sweden-iron.jpg
6094-magnify-clip-iron.png
Axe of iron from Swedish Iron Age, found at Gotland, Sweden.

In the period from the 12th to 10th century BCE, there was a rapid transition in the Middle East from bronze to iron tools and weapons. The critical factor in this transition does not appear to be the sudden onset of a superior iron working technology, but instead the disruption of the supply of tin. This period of transition, which occurred at different times in different parts of the world, is the ushering in of an age of civilization called the Iron Age. Classical authors ascribe the first invention of ironsmithing to peoples of the Caucasus and eastern Anatolia, such as the Khaldi (Chaldei) and the Khalib (Chalybes).

6095-100px-mars-symbol-svg-iron.png
6094-magnify-clip-iron.png
The common alchemical symbol for iron, the metal of weapons, is that of Mars, the god of war.

Concurrent with the transition from bronze to iron was the discovery of carburization, which was the process of adding carbon to the irons of the time. Iron was recovered as sponge iron, a mix of iron and slag with some carbon and/or carbide, which was then repeatedly hammered and folded over to free the mass of slag and oxidise out carbon content, so creating the product wrought iron. Wrought iron was very low in carbon content and was not easily hardened by quenching. The people of the Middle East found that a much harder product could be created by the long term heating of a wrought iron object in a bed of charcoal, which was then quenched in water or oil. The resulting product, which had a surface of steel, was harder and less brittle than the bronze it began to replace.

In China the first irons used were also meteoric iron, with archaeological evidence for items made of wrought iron appearing in the northwest, near Xinjiang, in the 8th century BCE. These items were made of wrought iron, created by the same processes used in the Middle East and Europe, and were thought to be imported by non-Chinese people.

In the later years of the Zhou Dynasty (ca 550 BCE), a new iron manufacturing capability began because of a highly developed kiln technology. Producing blast furnaces capable of temperatures exceeding 1300 K, the Chinese developed the manufacture of cast, or pig iron.

Iron was used in India as early as 250 BCE. The famous iron pillar in the Qutb complex in Delhi is made of very pure iron (98%) and has not rusted or eroded till this day.

6096-250px-maramec-iron-works-furnace-a-iron.jpg
6094-magnify-clip-iron.png
This blast furnace in eastern Missouri consumed up to 11,000 tons of ore and 16,000 cords of wood annually from 1827 to 1891.

If iron ores are heated with carbon to 1420–1470 K, a molten liquid is formed, an alloy of about 96.5% iron and 3.5% carbon. This product is strong, can be cast into intricate shapes, but is too brittle to be worked, unless the product is decarburized to remove most of the carbon. The vast majority of Chinese iron manufacture, from the Zhou dynasty onward, was of cast iron. Iron, however, remained a pedestrian product, used by farmers for hundreds of years, and did not really affect the nobility of China until the Qin dynasty (ca 221 BCE).

Cast iron development lagged in Europe, as the smelters could only achieve temperatures of about 1000 C; or perhaps they did not want hotter temperatures, as they were seeking to produce blooms as a precursor of wrought iron, not cast iron. Through a good portion of the Middle Ages, in Western Europe, iron was thus still being made by the working of iron blooms into wrought iron. Some of the earliest casting of iron in Europe occurred in Sweden, in two sites, Lapphyttan and Vinarhyttan, between 1150 and 1350 CE. Cast iron was then made into wrought iron by the osmond process. Some scholars have speculated the practice followed the Mongols across Russia to these sites, but there is no clear proof of this hypothesis. In any event, by the late fourteenth century, a market for cast iron goods began to form, as a demand developed for cast iron cannonballs.

Early iron smelting used charcoal as both the heat source and the reducing agent. In 18th century England, wood supplies became inadequate to enable the industry to expand and coke, a fossil fuel, began to be used an alternative. This innovation is associated with Abraham Darby at Coalbrookdale in 1709, but it was only later in the century that economically viable means of converting pig iron to bar iron were devised. The most successful such process was Henry Cort's puddling process, patented in 1784. Those processes permitted the great expansion in the production of iron that constitutes the Industrial Revolution for that industry.

Occurrence

6097-180px-ironinrocksmakeriverred-iron.jpg
6094-magnify-clip-iron.png
The red appearance of this water is due to iron in the rocks.

Iron is one of the most common elements on Earth, making up about 5% of the Earth's crust. Most of this iron is found in various iron oxides, such as the minerals hematite, magnetite, and taconite. The earth's core is believed to consist largely of a metallic iron-nickel alloy. About 5% of the meteorites similarly consist of iron-nickel alloy. Although rare, these are the major form of natural metallic iron on the earth's surface.

See also iron minerals.

Extraction from ore

Main article: Iron ore
6098-180px-iron-making-iron.jpg
6094-magnify-clip-iron.png
How Iron was extracted in the 19th Century
6099-180px-lightningvolt-iron-ore-pellets-iron.jpg
6094-magnify-clip-iron.png
This heap of iron ore pellets will be used in steel production.

Industrially, iron is extracted from its ores, principally hematite (nominally Fe2O3) and magnetite (Fe3O4) by a carbothermic reaction (reduction with carbon) in a blast furnace at temperatures of about 2000°C. In a blast furnace, iron ore, carbon in the form of coke, and a flux such as limestone are fed into the top of the furnace, while a blast of heated air is forced into the furnace at the bottom.

In the furnace, the coke reacts with oxygen in the air blast to produce carbon monoxide:

6 C + 3 O2 → 6 CO

The carbon monoxide reduces the iron ore (in the chemical equation below, hematite) to molten iron, becoming carbon dioxide in the process:

6 CO + 2 Fe2O3 → 4 Fe + 6 CO2

The flux is present to melt impurities in the ore, principally silicon dioxide sand and other silicates. Common fluxes include limestone (principally calcium carbonate) and dolomite (magnesium carbonate). Other fluxes may be used depending on the impurities that need to be removed from the ore. In the heat of the furnace the limestone flux decomposes to calcium oxide (quicklime):

CaCO3 → CaO + CO2

Then calcium oxide combines with silicon dioxide to form a slag.

CaO + SiO2 → CaSiO3

The slag melts in the heat of the furnace, which silicon dioxide would not have. In the bottom of the furnace, the molten slag floats on top of the more dense liquid iron, and spouts in the side of the furnace may be opened to drain off either the iron or the slag. The iron, once cooled, is called pig iron, while the slag can be used as a material in road construction or to improve mineral-poor soils for agriculture.

Approximately 1100Mt (million tons) of iron ore was produced in the world in 2000, with a gross market value of approximately 25 billion US dollars. While ore production occurs in 48 countries, the five largest producers were China, Brazil, Australia, Russia and India, accounting for 70% of world iron ore production. The 1100Mt of iron ore was used to produce approximately 572Mt of pig iron.

Compounds

Common oxidation states of iron include:

  • the Iron(-II) state, Fe2- (e.g. Fe(CO)42-,Fe(CO)2(NO)2.
  • the Iron(-I) state, Fe2(CO)42-.
  • the Iron(0) state, Fe(CO)5, Fe(PF3)5.
  • the Iron(I) state, [Fe(H2O)5NO]2+.
  • the Iron(II) state, Fe2+, previously ferrous is very common.
  • the Iron(III) state, Fe3+, previously ferric, is also very common, for example in rust.
  • the Iron(IV) state, Fe4+, previously ferryl, stabilized in some enzymes (e.g. peroxidases).

Note that despite the chemical formula, the iron in the common pyrite is not in the +4 oxidation state; the sulfur is in the -1 oxidation state.

  • the Iron(VI) state, Fe6+ is also known, if rare, in potassium ferrate.

Iron carbide Fe3C is known as cementite.

See also Iron compounds.

Isotopes

Naturally occurring iron consists of four isotopes: 5.845% of radioactive 54Fe (half-life: >3.1×1022 years), 91.754% of stable 56Fe, 2.119% of stable 57Fe and 0.282% of stable 58Fe. 60Fe is an extinct radionuclide of long half-life (1.5 million years). Much of the past work on measuring the isotopic composition of Fe has centered on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation.

The isotope 56Fe is of particular interest to nuclear scientists. A common misconception is that this isotope represents the most stable nucleus possible, and that it thus would be impossible to perform fission or fusion on 56Fe and still liberate energy. This is not true, as both 62Ni and 58Fe are more stable.

In phases of the meteorites Semarkona and Chervony Kut a correlation between the concentration of 60Ni, the daughter product of 60Fe, and the abundance of the stable iron isotopes could be found which is evidence for the existence of 60Fe at time formation of solar system. Possibly the energy released by the decay of 60Fe contributed, together with the energy released by decay of the radionuclide 26Al, to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial material may also provide further insight into the origin of the solar system and its early history. Of the stable isotopes, only 57Fe has a nuclear spin (−1/2). For this reason, 57Fe has application as a spin isotope in chemistry and biochemistry.

Biological role

6100-180px-heme-svg-iron.png
6094-magnify-clip-iron.png
Structure of Heme b

Iron is essential to all known organisms, except for a few bacteria. It is mostly stably incorporated in the inside of metalloproteins, because in exposed or in free form it causes production of free radicals that are generally toxic to cells. To say that iron is free doesn't mean that it is free floating in the bodily fluids. Iron binds avidly to virtually all biomolecules so it will adhere nonspecifically to cell membranes, nucleic acids, proteins etc. Iron can also help prevent lack of air in the lungs.

Many animals incorporate iron into the heme complex, an essential component of cytochromes, which are proteins involved in redox reactions (including but not limited to cellular respiration), and of oxygen carrying proteins hemoglobin and myoglobin. Inorganic iron involved in redox reactions is also found in the iron-sulfur clusters of many enzymes, such as nitrogenase (involved in the synthesis of ammonia from nitrogen and hydrogen) and hydrogenase. A class of non-heme iron proteins is responsible for a wide range of functions within several life forms, such as enzymes methane monooxygenase (oxidizes methane to methanol), ribonucleotide reductase (reduces ribose to deoxyribose; DNA biosynthesis), hemerythrins (oxygen transport and fixation in marine invertebrates) and purple acid phosphatase (hydrolysis of phosphate esters). When the body is fighting a bacterial infection, the body sequesters iron inside of cells (mostly stored in the storage molecule ferritin) so that it cannot be used by bacteria.

Iron distribution is heavily regulated in mammals, as a defense against bacterial infection and also because of the potential biological toxicity of iron. The iron absorbed from the duodenum binds to transferrin, and is carried by blood to different cells. There it gets by an as yet unknown mechanism incorporated into target proteins. [2]. A lengthier article on the system of human iron regulation can be found in the article on human iron metabolism.

Dietary sources

Good sources of dietary iron include meat, fish, poultry, lentils, beans, leaf vegetables, tofu, chickpeas, black-eyed pea, strawberries and farina.

Iron provided by dietary supplements is often found as Iron (II) fumarate. Iron sulfate is somewhat better absorbed, but the sulfur can upset the stomach. The most bioavailable form of iron supplement (ten to fifteen times more bioavailable than any other) is iron amino acid chelate. [3] The RDA for iron varies considerably based on the age, gender, and source of dietary iron (heme-based iron has higher bioavailability)[4]. Also note the section below on precautions.

Metallic iron filings are added to some breakfast cereals and listed in the ingredients as "reduced iron" ("reduced" referring to redox chemistry). If the cereal is crushed, the iron filings can be separated with a magnet.

Precautions

Excessive iron is toxic to humans, because excess ferrous iron reacts with peroxides in the body, producing free radicals. Iron becomes toxic when it exceeds the amount of transferrin needed to bind free iron. In excess, uncontrollable quantities of free radicals are produced.

Iron uptake is tightly regulated by the human body, which has no physiologic means of excreting iron and regulates iron solely by regulating uptake. However, too much ingested iron can damage the cells of the gastrointestinal tract directly, and may enter the bloodstream by damaging the cells that would otherwise regulate its entry. Once there, it causes damage to cells in the heart, liver and elsewhere. This can cause serious problems, including the potential of death from overdose, and long-term organ damage in survivors.

Humans experience iron toxicity above 20 milligrams of iron for every kilogram of weight, and 60 milligrams per kilogram is a lethal dose.[5] Over-consumption of iron, often the result of children eating large quantitities of ferrous sulfate tablets intended for adult consumption, is the most common toxicological cause of death in children under six. The DRI lists the Tolerable Upper Intake Level (UL) for adults as 45 mg/day. For children under fourteen years old the UL is 40 mg/day.

If iron intake is excessive iron overload disorders can sometimes result, such as hemochromatosis. Iron overload disorders require a genetic inability to regulate iron uptake; however, many people have a genetic susceptibility to iron overload without realizing it and without knowing a family history of the problem. For this reason, people should not take iron supplements unless they suffer from iron deficiency and have consulted a doctor. Blood donors are at special risk of low iron levels and are often recommended to supplement their iron intake.

The medical management of iron toxicity is complex. One element of the medical approach is a specific chelating agent called deferoxamine, used to bind and expel excess iron from the body in case of iron toxicity.

Resources